扫码阅读
手机扫码阅读
使用pandas_profiling对数据探索性分析

我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。

Python学习杂记
扫码关注公众号
pandas_profiling简介
pandas_profiling是一个基于pandas的数据分析工具,它可以快速分析DataFrame数据并生成报告,简化数据分析流程。其功能包括计算统计量、绘制频数分布直方图、检测缺失值、相关性检测、异常值标注和生成图表等,有助于数据分析和特征工程。
安装pandas_profiling
通过pip命令安装pandas_profiling后,可通过import语句导入使用。
pandas_profiling使用
使用pandas_profiling非常简单,只需对DataFrame调用profile_report方法。生成的报告包括数据概览、变量统计量、相关性、缺失值和警告等内容,使得用户能快速了解数据集的情况。
为报告设置标题
可以使用title参数设置报告的自定义标题。
保存报告到文件
使用to_file方法可以将报告保存为html文件。
自定义报告内容
minimal参数可以控制报告内容,设为True时将只包含概览和变量分析,也可以单独控制展示的内容。适用于简单和复杂的数据集,帮助快速探索数据关系。
想要了解更多内容?

Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
Numpy常用的45个经典操作
Numpy是一个强大的Python科学计算库,主要用于数组计算。它提供了对多维数组对象的支持和处理这些数组的函数。
动态规划原理及案例介绍
动态规划是一种常用的优化技术,本文介绍动态规划基本原理及常见案例。
Python中处理Excel文件常用库介绍
Python中有许多常用的处理Excel的库,本文介绍几个经常使用的。
使用numpy快速实现统计分析的常用代码实现
NumPy 是 Python 编程语言中用于数值计算的核心库之一,在统计分析方面,它也提供了各种各样的函数来实
一份超全Python代码汇总备忘清单
今天,我给大家分享一份我在GitHub上搜集的Python编程代码汇总备忘清单。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线