扫码阅读
手机扫码阅读
使用pandas_profiling对数据探索性分析
176 2024-10-27
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。
文章来源:
Python学习杂记
扫码关注公众号
pandas_profiling简介
pandas_profiling是一个基于pandas的数据分析工具,它可以快速分析DataFrame数据并生成报告,简化数据分析流程。其功能包括计算统计量、绘制频数分布直方图、检测缺失值、相关性检测、异常值标注和生成图表等,有助于数据分析和特征工程。
安装pandas_profiling
通过pip命令安装pandas_profiling后,可通过import语句导入使用。
pandas_profiling使用
使用pandas_profiling非常简单,只需对DataFrame调用profile_report方法。生成的报告包括数据概览、变量统计量、相关性、缺失值和警告等内容,使得用户能快速了解数据集的情况。
为报告设置标题
可以使用title参数设置报告的自定义标题。
保存报告到文件
使用to_file方法可以将报告保存为html文件。
自定义报告内容
minimal参数可以控制报告内容,设为True时将只包含概览和变量分析,也可以单独控制展示的内容。适用于简单和复杂的数据集,帮助快速探索数据关系。
想要了解更多内容?
文章来源:
Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
PCA主成分分析基本原理及案例
主成分分析(PCA)是一种常用的数据降维技术,它可以帮助我们在保留数据的主要特征信息的同时,减少数据的维度。
cp-sat求解器介绍及使用案例
ortools是Google开发的一套优化工具,其中ortools中自带的cp-sat是一个用于求解约束规划的求解器。
逻辑回归模型及算法实例
逻辑回归模型在很多领域都有应用,比如:病人是否患病(阴性、阳性)客户未来违约情况(违约、不违约)客户流失预测
人工智能在供应链应用中面临的挑战
随着人工智能技术的不断发展,未来几年供应链领域将迎来一系列技术进步。
Pandas常用的35个经典操作
pandas是Python最常用的数据处理库之一,本文介绍其最常用的基础操作。
加入社区微信群
与行业大咖零距离交流学习
SAFe6.0与CMMI3.0映射
白皮书上线
白皮书上线