扫码阅读
手机扫码阅读
使用Numpy提升Pandas处理数据的效率
![](/theme/default/default/images/main/eye-open.png)
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。
![](/theme/default/default/images/main/icon-jing.png)
Python学习杂记
扫码关注公众号
本文介绍了如何使用NumPy提高Pandas在处理大规模数据集时的性能。Pandas是一个广泛使用的Python库,专注于数据分析和处理,而NumPy是一个提供高效数值计算的库,两者结合可以优化数据处理流程。
1. 准备样本数据
文章首先展示了如何利用Pandas和NumPy创建一个包含10000行和4列的样本数据集。
2. 利用NumPy进行向量化操作
示例展示了如何使用NumPy进行向量化操作以计算某列数据的平方,避免了Python循环,提高了性能。
3. 使用NumPy进行条件筛选
通过NumPy的布尔索引实现快速条件筛选,以筛选出满足特定条件的数据行。
4. 利用NumPy进行聚合操作
介绍了如何使用NumPy的聚合函数来计算平均值,以提高效率。
5. 利用NumPy进行复杂的数学运算
NumPy的数学函数库用于进行复杂的数学运算,通常比Pandas的等效函数更快。
6. 优化内存使用
文章解释了如何通过指定NumPy数组的数据类型来减少内存使用并提高性能。
7. 性能测试
性能测试部分介绍了如何使用Python的timeit模块来评估Pandas和NumPy方法的性能,测试显示NumPy的方法是Pandas方法的3倍多速度。
8. 结论
结论指出,结合使用NumPy和Pandas能够在保持数据处理灵活性的同时,显著提高运算效率。
想要了解更多内容?
![](/theme/default/default/images/main/icon-jing.png)
Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
Python中列表切片常用的15个操作
Python列表切片是Python中一种非常强大的特性,它允许我们轻松地访问和操作列表的内部元素。
集成算法模型举例
前面有篇文章介绍了逻辑回归模型,用了一个违约率预测的案例,该模型的AUC值为0.816,本文用集成算法对数据进一步研究,进一步挖掘数据之间的关系,看能否提升模型的评估效果。
Faker,一个可生成各种类型虚拟数据的Python开源库
Faker库是Python中用于生成模拟数据的强大工具。它可以帮助开发者快速生成各种虚拟数据,从而简化开发和测试流程。
Python处理表格数据常用的35个操作
我们经常要处理excel的数据,本公众号在前文多次介绍使用pandas处理excel的数据基本方法。
一份超全Python代码汇总备忘清单
今天,我给大家分享一份我在GitHub上搜集的Python编程代码汇总备忘清单。
加入社区微信群
与行业大咖零距离交流学习
![](https://cdn.easycorp.cn/rongpm/upload/202312/f_39217d624bb2b42ce8f6322ebd7e573a.png)
![](https://cdn.easycorp.cn/rongpm/upload/202312/f_39217d624bb2b42ce8f6322ebd7e573a.png)
PMO实践白皮书
白皮书上线
白皮书上线