扫码阅读
手机扫码阅读
聚类方法介绍

我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


Python学习杂记
扫码关注公众号
聚类方法概述
聚类是一种无监督学习方法,用于将数据集中的数据点划分为若干个相似的子集,即聚类。常用的聚类方法包括基于划分的聚类、基于层次的聚类、基于密度的聚类、基于网格的聚类和基于模型的聚类。
常用聚类方法介绍
- 基于划分的聚类方法(如k-means、k-medoids、k-modes)将数据点划分为k个预先给定的簇。
- 基于层次的聚类方法(如凝聚型层次聚类和分裂型层次聚类)按照层次结构进行数据点划分。
- 基于密度的聚类方法(如DBSCAN、OPTICS、DENCLUE)关注密度高且连续的数据点形成的簇。
- 基于网格的聚类方法(如STING、CLIQUE、WaveCluster)将数据空间划分为网格单元。
- 基于模型的聚类方法(如高斯混合模型、谱聚类、神经网络)假设每个簇都服从某种概率模型或函数模型。
k-means聚类
使用k-means算法时,首先随机选择k个初始簇中心,然后将数据点分配到最近的簇中心,并更新簇中心为该簇内所有数据点的均值。重复这一过程直至簇中心稳定。示例中展示了如何使用Python代码实现k-means算法,并对生成的数据集及经纬度坐标数据进行可视化聚类。k-means算法的优点是简单、灵活、高效,能够发现数据中的模式,但缺点包括需要预先指定k值,对初始簇中心和噪声敏感,且可能无法处理非线性可分或自然不平衡的数据。
DBSCAN密度聚类算法
DBSCAN算法基于样本分布的紧密程度来确定聚类结构,定义邻域半径和最小点数来判断核心点,然后通过可连接性不断扩展聚类簇。示例中展示了DBSCAN算法的实现和对月牙形数据及随机数据的聚类结果可视化。DBSCAN算法的优点是能够发现任意形状的聚类,并且可以识别噪声点,不需要指定聚类个数,适合高维数据。然而,选择合适的邻域半径和密度阈值可能困难,且对于边界点的分配可能受访问顺序影响。
想要了解更多内容?


Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
谷歌gemma:先进的轻量级开源大模型
2月21日,谷歌宣布正式发布了一款名为Gemma的开源大模型。而令人吃惊的是,这一发布距离谷歌上一次发布大模型Gemini1.5还不到一周时间。
什么是P与NP问题?
在计算机科学和数学领域,P与NP问题是一个重要的未?
分享一些Python的学习资料
之前有一些朋友留言想要分享一些python学习的资料,我在这里分享之前我学习python收集到的部分资料,
几个好用的在线编程网站推荐
我们有时候经常不想打开软件,仅仅想小范围测算或者检测某段代码是否可行,这个时候在线编程网站就很实用了。本文要
国产AI新秀Kimi初体验
3月20日,一个名为Kimi的对话式AI助手成为市场焦点,相关概念股纷纷涨停,引发了投资者和自媒体的广泛关注。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线