扫码阅读
手机扫码阅读
遗传算法解决经典运输问题

我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


Python学习杂记
扫码关注公众号
遗传算法解决TSP问题摘要
遗传算法是一种常用于优化问题的启发式算法,它通过模拟生物进化过程中的交叉遗传、突变和选择机制来迭代搜索最优解。本文以解决经典的运输问题——旅行商问题(TSP)为例,阐述了如何使用Python编写遗传算法程序进行求解。
程序步骤概述
- 导入数据:建立节点间距离矩阵,通过API获取实际路程距离。
- 构建种群:用1-20的自然数编码种群的DNA,设定初始参数。
- 适应度函数:适应度以距离倒数定义,距离越短适应度越高。
- 轮盘筛选:使用np.random.choice函数按适应度概率选择父本。
- 变异操作:设置一定变异概率,随机交换两个节点位置。
- 交叉操作:设置交叉概率,交换部分基因序列。
- 进化迭代:按照上述步骤循环迭代至下一代。
- 绘图观察:记录并绘制每一代的迭代效果。
完整代码
文章最后提供了完整的Python代码,包含了数据导入、种群初始化、适应度函数、轮盘筛选、变异、交叉等关键步骤,以及相关参数的设置。代码还包括了绘图功能,用于展示算法的迭代效果。
结论
遗传算法在解决TSP等NP难问题方面表现出较好的效果。文章通过提供的Python代码示例,展示了如何通过遗传算法步骤寻找TSP问题的最优解,并通过迭代过程的可视化,观察算法性能。
想要了解更多内容?


Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
分享一个上海交大人工智能班在github上的开源知识库
最近看到一个不错的开源机器学习、运筹学相关的知识库汇总项目,今天给大家分享一下这个项目。
Python中装饰器的基础使用
Python在编写复杂算法的时候,使用装饰器可以让函数更简洁、复用率更高,减少重复造轮子。本文介绍Pytho
更多AI工具推荐(Stable Diffusion,Forefront Chat等)
目前AI绘画最火的当属Midjorney和Stable Diffusion。Midjourney之前大家很熟悉,很多地方都有介绍,本文分享下Stable Diffusion。
先跑通、再跑对、然后持续优化
自从我回到武汉工作以来,我陆续负责了多个项目,包括配送路线优化和仓网布局选址等。
Pandas快速实现绘图功能介绍
数据可视化是数据分析中的重要环节,它帮助我们直观地理解数据特征和洞察数据模式。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线