扫码阅读
手机扫码阅读

Pyomo:强大的优化建模工具库

116 2024-10-27

我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。

查看原文:Pyomo:强大的优化建模工具库
文章来源:
Python学习杂记
扫码关注公众号
Pyomo优化建模工具应用摘要

Pyomo优化建模工具概述

Pyomo是一个基于Python的优化建模工具,专注于构建和求解线性、非线性以及混合整数优化模型。它能够配合多种求解器,如GLPK、Cplex和Gurobi,来解决实际问题。本文将探讨Pyomo在不同领域,包括生产规划、供应链管理和能源系统分析等方面的应用。

应用案例:生产规划

以一个简单的生产规划问题为例,介绍Pyomo的应用。考虑一家工厂,生产两种产品,产品A和产品B。产品A的生产成本为3元、销售价值为6元,而产品B的生产成本为4元、销售价值为7元。工厂共有6台机器,每台机器每天工作8小时,工厂每天工作24小时。产品A每单位需1小时,产品B每单位需2小时生产时间。本案例旨在规划生产以最大化利润。

代码与结果

使用Pyomo定义模型对象和决策变量,通过设定目标函数和约束条件来形成优化模型。在这个案例中,目标函数为最大化利润,即销售价值减去生产成本。约束条件包括机器的工作时间限制。以下是Pyomo代码的简要展示:

from pyomo.environ import *
# 创建模型对象
model = ConcreteModel()
# 定义决策变量
model.x = Var(['A', 'B'], within=NonNegativeReals)
# 定义目标函数
model.profit = Objective(expr=6*model.x['A'] + 7*model.x['B'] - 3*model.x['A'] - 4*model.x['B'], sense=maximize)
# 定义约束条件
model.machine_constraint = Constraint(expr=1*model.x['A'] + 2*model.x['B'] <= 48)

通过设定的决策变量和约束条件,利用Pyomo可以求解出工厂的最优生产计划,从而实现利润最大化。

摘要结束。

想要了解更多内容?

查看原文:Pyomo:强大的优化建模工具库
文章来源:
Python学习杂记
扫码关注公众号

探索运筹优化、机器学习、AI 和数据可视化的奥秘及其落地应用

256 篇文章
浏览 21.8K
加入社区微信群
与行业大咖零距离交流学习
软件研发质量管理体系建设 白皮书上线