扫码阅读
手机扫码阅读
Python常用统计库Statsmodels介绍

我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。

Python学习杂记
扫码关注公众号
Statsmodels库概述
Statsmodels是一个基于Python的统计模型估计和推断库。它使用NumPy和Pandas库,提供了线性回归、广义线性模型和时间序列模型等多种模型类别。Statsmodels核心理念是利用统计方法对数据进行建模和推断。
基础使用
安装
通过pip可简单安装Statsmodels库。
pip install statsmodels
模型举例
以下是使用最小二乘法进行建模的例子,包括数据生成、模型拟合和结果输出的过程。通过输出结果可以查看模型拟合的优度。
import numpy as np import pandas as pd import statsmodels.api as sm np.random.seed(1) nsample = 100 x = np.linspace(0, 10, 100) X = np.column_stack((x, x ** 2)) beta = np.array([1, 0.1, 10]) e = np.random.normal(size=nsample) X = sm.add_constant(X) y = np.dot(X, beta) + e model = sm.OLS(y, X) results = model.fit() print(results.summary()) print("Parameters: ", results.params) print("R2: ", results.rsquared)
应用领域
Statsmodels库在金融、医学研究和经济学等众多领域有广泛应用,比如构建预测模型、风险分析、评估治疗效果等。
更多信息可访问Statsmodels官网:https://www.statsmodels.org/
想要了解更多内容?

Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
Pyecharts实现大屏可视化
在之前的文章介绍过Pyecharts可以绘制各类统计图,比如地图、柱状图、饼图、折现图等各类统计图。
Numpy常用的45个经典操作
Numpy是一个强大的Python科学计算库,主要用于数组计算。它提供了对多维数组对象的支持和处理这些数组的函数。
Python处理表格数据常用的35个操作
我们经常要处理excel的数据,本公众号在前文多次介绍使用pandas处理excel的数据基本方法。
pandas可视化
在Python中,常用到的数据可视化工具库有:pyecharts、matplotlib、plotly、seaborn等,这些常用到的可视化图库,画图功能强大。但其实pandas自带可视化功能,虽然没有前面的库强大,但胜在方便。
itertools:Python中迭代器工具
在Python中,迭代器是一个非常强大的工具,允许我们以更高效的方式处理数据。然而,当我们需要处理大量的数据
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线