扫码阅读
手机扫码阅读
聚类的k值确定之轮廓系数
283 2024-10-27
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。
查看原文:聚类的k值确定之轮廓系数
文章来源:
Python学习杂记
扫码关注公众号
确定聚类簇数的轮廓系数方法概述
在进行聚类分析时,确定最佳聚类簇数(如k-means中的k值)常使用手肘法,但这方法存在主观误差。轮廓系数,由Peter J. Rousseeuw于1986年提出,是一个评价聚类效果的指标,它通过计算内聚度和分离度来评估聚类的k值。
轮廓系数的定义与计算
轮廓系数是用来衡量一个聚类结果的紧密度和分离度,其公式为 s = (b-a)/max(a,b),其中a是簇内不相似度的平均值即内聚度,b是簇间不相似度的平均值即分离度。通过计算每个点的轮廓系数并求平均值,可以得到整个模型的轮廓系数。
轮廓系数的解释
轮廓系数的值介于-1到1之间,值越大表示聚类结果越好。负值表示聚类效果不佳,接近0表示聚类结果不明显,而接近1则表示聚类结果很好。
k-means算法流程
k-means算法包括选择初始质心、将点指派到最近质心形成簇、计算新的聚类中心以及迭代上述步骤直到质心不变。
轮廓系数的计算实践
可以使用sklearn的silhouette_score函数直接计算轮廓系数。通过实例演示,当k值为3时,轮廓系数最大,建议分为3类。此外,也可以手动计算轮廓系数,包括内聚度、分离度和每个点的轮廓系数的计算。
评价和局限性
虽然轮廓系数是一个有用的指标,但它对于凸簇结构的数据效果较好,对于需要使用DBSCAN等算法聚类的非凸簇结构数据效果则不佳。因此,在使用轮廓系数评价不同聚类算法时应注意其局限性。
想要了解更多内容?
查看原文:聚类的k值确定之轮廓系数
文章来源:
Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
Mosek求解器在Python中安装、配置及使用
本文将详细介绍如何在Python中安装、配置和使用高性能求解器Mosek。
GEKKO:一个用于非线性优化问题的求解器
GEKKO是一个用于动态系统建模和优化的Python库。
初探Bokeh包:用Python实现惊艳的数据可视化
Python的Bokeh包是一个用于数据可视化的强大工具。它提供了一种简单而灵活的方式来创建各种交互式图形,并且能够在Web浏览器中进行展示。
以下六类职业,将不会被人工智能取代
随着人工智能技术的快速发展,许多行业都经历了变革,一些岗位也因自动化和智能化而受到威胁。
Pandas快速实现绘图功能介绍
数据可视化是数据分析中的重要环节,它帮助我们直观地理解数据特征和洞察数据模式。
加入社区微信群
与行业大咖零距离交流学习
软件研发质量管理体系建设
白皮书上线