扫码阅读
手机扫码阅读
集成算法模型举例
141 2024-10-28
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。
查看原文:集成算法模型举例
文章来源:
Python学习杂记
扫码关注公众号
本文通过集成算法对之前介绍的逻辑回归模型进行了优化。在违约率预测案例中,逻辑回归模型的AUC值为0.816,而集成算法尝试进一步提升模型的预测效果。
集成模型的介绍
集成算法(Ensemble Learning)通过结合多个学习器来完成学习任务,往往能获得比单一学习器更优的效果。它主要包括三大类:
- Bagging:基于自举采样法,随机得到多个样本集来训练不同的基学习器,再通过投票得出最终结果。
- Boosting:通过组合一系列弱分类器来形成一个强分类器,例如Adaboost、Xgboost、GBDT等。特别提到由陈天奇博士发明的Xgboost算法,该算法在竞赛中表现突出。
- Stacking:多模型堆叠,通过平均值或权重投票构建新模型,通常预测效果优于单个模型。
集成算法实验
实验采用了多种机器学习算法,包括支持向量机、近邻算法、贝叶斯预测、神经网络、随机森林、梯度提升树算法和逻辑回归。通过标准化处理、模型训练、预测及评分,最终使用ROC-AUC评价指标进行了效果比较。
结果分析
集成算法在本例中的AUC值达到0.853,优于单独使用的七种算法。这表明集成算法能够有效整合各个单一算法的优势,提升模型的预测性能。然而,集成算法的运算过程较为复杂,运行时间达到了接近3秒,这与处理的数据样本规模和模型复杂性有关。在未来的优化中,调参和使用k折交叉验证等方法对模型参数进行选择将是提升效率和性能的关键。
想要了解更多内容?
查看原文:集成算法模型举例
文章来源:
Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
Mosek求解器在Python中安装、配置及使用
本文将详细介绍如何在Python中安装、配置和使用高性能求解器Mosek。
Python制作gif动图
Python可以画各种各样的动态图,但是要插入到PPT中,gif动态图是最方便的。gif动态图可以直接插入到PPT中,很方便工作。
FelooPy,一个Python的算法建模集成库介绍
今天要给大家介绍一个解决运筹优化问题的开源库FelooPy 。
FittenCode,程序员必备的免费AI编程工具
Fitten Code 是由非十大模型驱动的AI编程助手,它可以自动生成代码,提升开发效率,协助调试 Bug。
使用遗传算法求解非线性优化问题
我们在平时遇到的业务问题,很多目标函数、约束函数都是非线性的。本文介绍使用一个遗传算法包来解决这些复杂的模型求极值的问题。
加入社区微信群
与行业大咖零距离交流学习
软件研发质量管理体系建设
白皮书上线