扫码阅读
手机扫码阅读
集成算法模型举例

我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


Python学习杂记
扫码关注公众号
本文通过集成算法对之前介绍的逻辑回归模型进行了优化。在违约率预测案例中,逻辑回归模型的AUC值为0.816,而集成算法尝试进一步提升模型的预测效果。
集成模型的介绍
集成算法(Ensemble Learning)通过结合多个学习器来完成学习任务,往往能获得比单一学习器更优的效果。它主要包括三大类:
- Bagging:基于自举采样法,随机得到多个样本集来训练不同的基学习器,再通过投票得出最终结果。
- Boosting:通过组合一系列弱分类器来形成一个强分类器,例如Adaboost、Xgboost、GBDT等。特别提到由陈天奇博士发明的Xgboost算法,该算法在竞赛中表现突出。
- Stacking:多模型堆叠,通过平均值或权重投票构建新模型,通常预测效果优于单个模型。
集成算法实验
实验采用了多种机器学习算法,包括支持向量机、近邻算法、贝叶斯预测、神经网络、随机森林、梯度提升树算法和逻辑回归。通过标准化处理、模型训练、预测及评分,最终使用ROC-AUC评价指标进行了效果比较。
结果分析
集成算法在本例中的AUC值达到0.853,优于单独使用的七种算法。这表明集成算法能够有效整合各个单一算法的优势,提升模型的预测性能。然而,集成算法的运算过程较为复杂,运行时间达到了接近3秒,这与处理的数据样本规模和模型复杂性有关。在未来的优化中,调参和使用k折交叉验证等方法对模型参数进行选择将是提升效率和性能的关键。
想要了解更多内容?


Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
用Python的Scipy库求解线性规划、非线性规划、整数规划问题
Scipy是Python中一个强大且广泛使用的科学计算库,内置了许多优化算法。
一款小型求解器使用介绍
今天给大家介绍一款小型求解器:excel_solver。该求解器是基于Scipy、Numpy开发的。
探索 Python 画图世界:常用包汇总
在 Python中有着许多常用的画图包,如 pyecharts、bokeh、seaborn、plotly等。
Python机器学习常用库介绍
在 Python 的机器学习领域,有许多常用且强大的库。这些库提供了各种工具和功能,使得开发者能够轻松地构建、训练和部署机器学习模型。
知乎II去北上广深,还是去二线工作?
现在无论是计算机、金融,还是其他热门行业,都可能面临裁员的风险,各行各业就业压力极大,很多一线大厂开始裁员了。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线