多仓库选址-MIP问题建模及求解
发布于 2024-10-27


版权声明
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


Python学习杂记
扫码关注公众号
扫码阅读
手机扫码阅读
物流公司在选址时面临着确定仓库位置及网点分配至哪个仓库的问题。文章通过建立混合整数规划模型(MIP),解决了一个包含15个配送网点和3个备选配送中心的离散选址问题,这种模型在多个领域都有广泛应用。
为了解决这个问题,文章使用了pulp库。在本例中,由于选址问题规模较小,不需要第三方求解器;但对于大规模问题,建议使用gurobi、cplex或scip等求解器。传入数据包括15个需配送的网点,3个备选配送选址点以及每个选址点到网点的运输成本和每个选址点的日均成本。
决策变量分为两类,第一类是3个0-1变量用于表示是否选择某个选址点,第二类是45个0-1变量用于表示网点被分配至哪个选址点。目标函数是最小化仓库成本与运输成本之和。约束条件包括每个网点仅被分配到一个选址点,至少选择一个仓库,以及仓库是否选择与网点分配之间的关联。
在模型求解后,可以打印出所选择的选址点,网点的分配情况以及总成本。这个模型可以扩展到包含更多网点和选址点的复杂问题,尽管模型会变得更加复杂,但建模逻辑保持不变,大规模问题的解决则依赖于高效的求解器或启发式算法。
Python学习杂记


Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
推荐一个免费练习编程的网站
最近不少朋友在后台留言问我:如何提高编程水平。今天给大家推荐一个免费的可以练习编程能力的网站-力扣。
使用Scikit-learn快速实现机器学习分类任务
Scikit-learn(通常简称为sklearn)是Python语言中的一个强大的机器学习库,它集成了众多常
遗传算法解决经典运输问题
遗传算法是优化求解常用的一种启发式算法,其原理是模拟进化的过程,包括交叉遗传、突变、选择等方式繁衍后代,计算机通过模拟这些算子,优中选优,通过一次次迭代、繁衍,这些过程的目的就是搜索最优解。
*args 和**kwargs使用介绍
在 Python 编程中,* args 和** kwargs 是常用的两个参数。
Qaekwy,一个崭新的Python运筹优化库
今天给大家介绍一下Qaekwy,一个比Python运筹优化库,该优化库是2023年才建立的。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线