扫码阅读
手机扫码阅读
用Python的Scipy库求解线性规划、非线性规划、整数规划问题

我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。

Python学习杂记
扫码关注公众号
Scipy科学计算库概述
Scipy是Python中的一个科学计算库,它集成了多种优化算法,便于解决线性规划、非线性规划和整数规划等问题。
线性规划的求解
线性规划是指目标函数和约束条件都是线性的情况。在Scipy库中,可以使用linprog
函数来解决这类问题。下面是一个例子,展示如何使用Scipy求解线性规划:
import scipy.optimize
c = [2, 3, -5] # 目标函数系数
A_ub = [[-2, 5, -1], [1, 3, 1]] # 约束矩阵系数
b_ub = [-10, 12] # 约束条件右值
A_eq = [[1, 1, 1]] # 约束矩阵等式系数
b_eq = [7.12] # 约束等式右值
bounds = [(0, 3.5), (0, 3.6), (0, 100.1)] # 变量区间
res = scipy.optimize.linprog(c=c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds)
print(res)
print(res.get('x'))
在上述例子中,A_ub
和b_ub
用于指定线性约束条件,将问题建模为矩阵形式,以便于用函数求解。求解结果表明,优化成功完成,并给出了最优解。
对于不熟悉矩阵表示法的用户,可以将约束条件转换为常规形式,如下所示:
# 目标函数(默认求最小值,加负号表示求最大值)2x1 + 3x2 - 5x3
# 约束函数 -2x1 + 5x2 - x3 ≤ -10
# x1 + 3x2 + x3 ≤ 12
这种表示法更直观,便于理解线性规划的结构。
想要了解更多内容?

Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
folium的一些定制化操作
folium是一个非常好的画图包,可以在地图上标点、画线、标区域等。但有时候我们需要定制化的操作,本文将详细介绍一些常用的一些定制化方法。
OR-tools使用介绍(二)
接上期,OR-tools 最核心的功能是解决车辆路径问题。其提供了车辆路径问题的不同场景的建模,本文介绍OR-tools解决车辆路径问题的方法。
NumPy的基础用法
之前我做数据处理经常使用pandas库,numpy用的相对较少。但在编写遗传算法的时候有个轮盘对赌选取基因的过程,发现用numpy写就很方便了。现在把numpy的基本使用简单归纳一下。
定制Pandas导出数据表的式样
pandas是python中常用的数据处理库,但是其输出的数据样式比较粗糙,本文介绍如何定制pandas导出的式样。
Python镜像源配置
pip从PyPI仓库下载包,对于中国用户来说,由于网络环境的原因,有时会出现下载速度较慢的情况。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线