扫码阅读
手机扫码阅读
Numpy常用的45个经典操作

我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


Python学习杂记
扫码关注公众号
概述:Numpy 是一款强大的 Python 科学计算库,专门用于处理多维数组。它提供了丰富的函数用于数组操作,如数学计算、逻辑处理、形状操作、排序、选择、线性代数、统计操作和随机模拟等。
常用操作:熟练掌握 Numpy 可显著提高编程和计算效率。以下列出了 Numpy 中的一些常用操作:
- 创建数组:使用
np.array
。 - 数组转置:通过
np.transpose
。 - 创建特定类型数组:如全零、全一、空、具有特定值的数组。
- 生成数列:使用
np.arange
和随机数函数。 - 数组属性:获取形状、维度、大小。
- 数组元素操作:获取、设置、判断元素是否存在。
- 数组切片和拼接:使用切片语法和
np.concatenate
。 - 数组算术操作:加、减、乘、除及更多复杂运算。
- 数组统计计算:求和、平均值、最大/最小值等。
- 数组排序、翻转和逆序。
- 数组累积操作:累积和与累积积。
- 处理非零元素:计数和索引非零元素。
- 数组的高级操作:包括唯一元素获取、元素频率、求逆、特征值和向量、奇异值分解、解线性方程组、行列式、范数和求秩等。
结论:以上所示为 Numpy 库中的常用操作。掌握这些基础操作是快速上手和有效使用 Numpy 的关键。
想要了解更多内容?


Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
Kimi的5大功能,让日常工作更高效
Kimi是由月之暗面科技有限公司(Moonshot AI)精心研发的人工智能助手,自2023年10月10日推出。
Faker,一个可生成各种类型虚拟数据的Python开源库
Faker库是Python中用于生成模拟数据的强大工具。它可以帮助开发者快速生成各种虚拟数据,从而简化开发和测试流程。
几个好用的在线编程网站推荐
我们有时候经常不想打开软件,仅仅想小范围测算或者检测某段代码是否可行,这个时候在线编程网站就很实用了。本文要
xlwings的基本使用介绍
在实际工作中,Excel是一个非常常用的工具。但是仅仅会使用Excel进行数据处理和分析是远远不够的。
Numpy算法实现常用的20个操作
在解决复杂算法问题时,Numpy 提供了丰富的高级操作来简化计算和数据处理。本文介绍20个Numpy在算法设计和实现经常用到的操作。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线