如何提升数据质量?(附实战文档)

版权声明
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


数据治理体系
扫码关注公众号
扫码阅读
手机扫码阅读
数据质量保障摘要
一、前言
数据质量保障关键步骤包括制定数据质量规则、指标,进行数据探查,建立数据保障机制以及数据清洗。这些步骤对从事或计划从事数据质量工作的人员非常有帮助。
二、数据质量基础
数据质量管理涉及数据生命周期中各阶段可能出现的数据质量问题。数据质量的六个关键维度包括完整性、及时性、有效性、一致性、唯一性和准确性。
三、数据质量规则,数据质量指标
数据质量规则和指标的设计决定数据质量的好坏。规则和指标涉及单列数据的完整性和准确性,跨列的一致性和及时性,跨行的唯一性,以及跨表和跨系统的一致性和及时性。
四、数据探查
数据探查是数据质量保障的重要一步,它是提升效率和质量的基础。数据探查包括完整性分析、值域分析、枚举值分析和逻辑性探查等方面。
五、数据质量保障机制
数据质量持续提升依赖于自动化、常态化监控。保障机制包括设计量化指标、质量打分细则、分值考核、异常数据监控、指标展现以及规则推送提醒。
六、数据清洗
数据清洗的目的是删除重复信息、纠正错误,并提供数据一致性。它是存量数据质量提升的关键,对支持数据分析和洞见很重要。
七、结语
文章提供了数据质量的理解和实战经验。作者鼓励关注、转发,并邀请读者留言或加入讨论组,共同构建数据治理体系。资料获取方式通过公众号提供。
数据治理体系


数据治理体系
扫码关注公众号
持续完善数据治理实战体系,数据仓库、标签、指标体系,实现业务数字化,数字资产化,资产业务化,资产资本化;回归业务场景的数字化案例才最具参考价值,最容易理解和借鉴的。关注我,和您一起终身学习。
29 篇文章
浏览 10.3K
数据治理体系的其他文章
标签体系构建的核心思想是什么?
一、标签体系的方法论已经很多,我就不再重复了,本篇主要分享下三维构建签体系的理解和实现模板。
数据治理12个领域资料(全部下载)
12大知识领域资料持续构建、分享,一起学习,共同进步,分享共进,互助共赢。
指标和标签的基础理解(附下载)
标签是对象的属性,一般到字段粒度,面向数据应用端,是资源,是资产,可定价、可售卖、可交易的一种数据产品,包含属性、特征、指标、参数等;
技术|业务|管理,三面数据仓库
IT角度VS业务角度VS管理角度看数据仓库
业务键和代理键是互斥关系?关于DMBOK2中文版中一段话引发的思考
一、起因今天下午读DMBOK2,第五章,179页,键的功能类型中有一段话“业务键和代理键是互斥关系”,发现有点难以理解这句话,于是我去求助各位大神,看看大神对这个是怎么理解的。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线